2018-04-22 05:30:56 +02:00
|
|
|
/*
|
|
|
|
* Copyright (c) Sebastian Krzyszkowiak <dos@dosowisko.net>
|
|
|
|
*
|
|
|
|
* This program is free software; you can redistribute it and/or modify
|
|
|
|
* it under the terms of the GNU General Public License as published by
|
|
|
|
* the Free Software Foundation; either version 3 of the License, or
|
|
|
|
* (at your option) any later version.
|
|
|
|
*
|
|
|
|
* This program is distributed in the hope that it will be useful,
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
* GNU General Public License for more details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU General Public License
|
|
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
*/
|
2018-11-26 01:25:56 +01:00
|
|
|
|
2018-04-22 05:30:56 +02:00
|
|
|
#include "internal.h"
|
|
|
|
|
|
|
|
// Easing formulas (c) 2011, Auerhaus Development, LLC
|
|
|
|
// Originally licensed under WTFPL 2.0
|
|
|
|
// https://github.com/warrenm/AHEasing
|
|
|
|
|
|
|
|
// Modeled after the line y = x
|
|
|
|
static double LinearInterpolation(double p) {
|
|
|
|
return p;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Modeled after the parabola y = x^2
|
|
|
|
static double QuadraticEaseIn(double p) {
|
|
|
|
return p * p;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Modeled after the parabola y = -x^2 + 2x
|
|
|
|
static double QuadraticEaseOut(double p) {
|
|
|
|
return -(p * (p - 2));
|
|
|
|
}
|
|
|
|
|
|
|
|
// Modeled after the piecewise quadratic
|
|
|
|
// y = (1/2)((2x)^2) ; [0, 0.5)
|
|
|
|
// y = -(1/2)((2x-1)*(2x-3) - 1) ; [0.5, 1]
|
|
|
|
static double QuadraticEaseInOut(double p) {
|
|
|
|
if (p < 0.5) {
|
|
|
|
return 2 * p * p;
|
|
|
|
}
|
|
|
|
return (-2 * p * p) + (4 * p) - 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Modeled after the cubic y = x^3
|
|
|
|
static double CubicEaseIn(double p) {
|
|
|
|
return p * p * p;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Modeled after the cubic y = (x - 1)^3 + 1
|
|
|
|
static double CubicEaseOut(double p) {
|
|
|
|
double f = (p - 1);
|
|
|
|
return f * f * f + 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Modeled after the piecewise cubic
|
|
|
|
// y = (1/2)((2x)^3) ; [0, 0.5)
|
|
|
|
// y = (1/2)((2x-2)^3 + 2) ; [0.5, 1]
|
|
|
|
static double CubicEaseInOut(double p) {
|
|
|
|
if (p < 0.5) {
|
|
|
|
return 4 * p * p * p;
|
|
|
|
}
|
|
|
|
double f = ((2 * p) - 2);
|
|
|
|
return 0.5 * f * f * f + 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Modeled after the quartic x^4
|
|
|
|
static double QuarticEaseIn(double p) {
|
|
|
|
return p * p * p * p;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Modeled after the quartic y = 1 - (x - 1)^4
|
|
|
|
static double QuarticEaseOut(double p) {
|
|
|
|
double f = (p - 1);
|
|
|
|
return f * f * f * (1 - p) + 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Modeled after the piecewise quartic
|
|
|
|
// y = (1/2)((2x)^4) ; [0, 0.5)
|
|
|
|
// y = -(1/2)((2x-2)^4 - 2) ; [0.5, 1]
|
|
|
|
static double QuarticEaseInOut(double p) {
|
|
|
|
if (p < 0.5) {
|
|
|
|
return 8 * p * p * p * p;
|
|
|
|
}
|
|
|
|
double f = (p - 1);
|
|
|
|
return -8 * f * f * f * f + 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Modeled after the quintic y = x^5
|
|
|
|
static double QuinticEaseIn(double p) {
|
|
|
|
return p * p * p * p * p;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Modeled after the quintic y = (x - 1)^5 + 1
|
|
|
|
static double QuinticEaseOut(double p) {
|
|
|
|
double f = (p - 1);
|
|
|
|
return f * f * f * f * f + 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Modeled after the piecewise quintic
|
|
|
|
// y = (1/2)((2x)^5) ; [0, 0.5)
|
|
|
|
// y = (1/2)((2x-2)^5 + 2) ; [0.5, 1]
|
|
|
|
static double QuinticEaseInOut(double p) {
|
|
|
|
if (p < 0.5) {
|
|
|
|
return 16 * p * p * p * p * p;
|
|
|
|
}
|
|
|
|
double f = ((2 * p) - 2);
|
|
|
|
return 0.5 * f * f * f * f * f + 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Modeled after quarter-cycle of sine wave
|
|
|
|
static double SineEaseIn(double p) {
|
|
|
|
return sin((p - 1) * (ALLEGRO_PI / 2.0)) + 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Modeled after quarter-cycle of sine wave (different phase)
|
|
|
|
static double SineEaseOut(double p) {
|
|
|
|
return sin(p * (ALLEGRO_PI / 2.0));
|
|
|
|
}
|
|
|
|
|
|
|
|
// Modeled after half sine wave
|
|
|
|
static double SineEaseInOut(double p) {
|
|
|
|
return 0.5 * (1 - cos(p * ALLEGRO_PI));
|
|
|
|
}
|
|
|
|
|
|
|
|
// Modeled after shifted quadrant IV of unit circle
|
|
|
|
static double CircularEaseIn(double p) {
|
|
|
|
return 1 - sqrt(1 - (p * p));
|
|
|
|
}
|
|
|
|
|
|
|
|
// Modeled after shifted quadrant II of unit circle
|
|
|
|
static double CircularEaseOut(double p) {
|
|
|
|
return sqrt((2 - p) * p);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Modeled after the piecewise circular function
|
|
|
|
// y = (1/2)(1 - sqrt(1 - 4x^2)) ; [0, 0.5)
|
|
|
|
// y = (1/2)(sqrt(-(2x - 3)*(2x - 1)) + 1) ; [0.5, 1]
|
|
|
|
static double CircularEaseInOut(double p) {
|
|
|
|
if (p < 0.5) {
|
|
|
|
return 0.5 * (1 - sqrt(1 - 4 * (p * p)));
|
|
|
|
}
|
|
|
|
return 0.5 * (sqrt(-((2 * p) - 3) * ((2 * p) - 1)) + 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Modeled after the exponential function y = 2^(10(x - 1))
|
|
|
|
static double ExponentialEaseIn(double p) {
|
|
|
|
return (p == 0.0) ? p : pow(2, 10 * (p - 1));
|
|
|
|
}
|
|
|
|
|
|
|
|
// Modeled after the exponential function y = -2^(-10x) + 1
|
|
|
|
static double ExponentialEaseOut(double p) {
|
|
|
|
return (p == 1.0) ? p : 1 - pow(2, -10 * p);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Modeled after the piecewise exponential
|
|
|
|
// y = (1/2)2^(10(2x - 1)) ; [0,0.5)
|
|
|
|
// y = -(1/2)*2^(-10(2x - 1))) + 1 ; [0.5,1]
|
|
|
|
static double ExponentialEaseInOut(double p) {
|
|
|
|
if (p == 0.0 || p == 1.0) { return p; }
|
|
|
|
|
|
|
|
if (p < 0.5) {
|
|
|
|
return 0.5 * pow(2, (20 * p) - 10);
|
|
|
|
}
|
|
|
|
return -0.5 * pow(2, (-20 * p) + 10) + 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Modeled after the damped sine wave y = sin(13pi/2*x)*pow(2, 10 * (x - 1))
|
|
|
|
static double ElasticEaseIn(double p) {
|
|
|
|
return sin(13 * (ALLEGRO_PI / 2.0) * p) * pow(2, 10 * (p - 1));
|
|
|
|
}
|
|
|
|
|
|
|
|
// Modeled after the damped sine wave y = sin(-13pi/2*(x + 1))*pow(2, -10x) + 1
|
|
|
|
static double ElasticEaseOut(double p) {
|
|
|
|
return sin(-13 * (ALLEGRO_PI / 2.0) * (p + 1)) * pow(2, -10 * p) + 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Modeled after the piecewise exponentially-damped sine wave:
|
|
|
|
// y = (1/2)*sin(13pi/2*(2*x))*pow(2, 10 * ((2*x) - 1)) ; [0,0.5)
|
|
|
|
// y = (1/2)*(sin(-13pi/2*((2x-1)+1))*pow(2,-10(2*x-1)) + 2) ; [0.5, 1]
|
|
|
|
static double ElasticEaseInOut(double p) {
|
|
|
|
if (p < 0.5) {
|
|
|
|
return 0.5 * sin(13 * (ALLEGRO_PI / 2.0) * (2 * p)) * pow(2, 10 * ((2 * p) - 1));
|
|
|
|
}
|
|
|
|
return 0.5 * (sin(-13 * (ALLEGRO_PI / 2.0) * ((2 * p - 1) + 1)) * pow(2, -10 * (2 * p - 1)) + 2);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Modeled after the overshooting cubic y = x^3-x*sin(x*pi)
|
|
|
|
static double BackEaseIn(double p) {
|
|
|
|
return p * p * p - p * sin(p * ALLEGRO_PI);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Modeled after overshooting cubic y = 1-((1-x)^3-(1-x)*sin((1-x)*pi))
|
|
|
|
static double BackEaseOut(double p) {
|
|
|
|
double f = (1 - p);
|
|
|
|
return 1 - (f * f * f - f * sin(f * ALLEGRO_PI));
|
|
|
|
}
|
|
|
|
|
|
|
|
// Modeled after the piecewise overshooting cubic function:
|
|
|
|
// y = (1/2)*((2x)^3-(2x)*sin(2*x*pi)) ; [0, 0.5)
|
|
|
|
// y = (1/2)*(1-((1-x)^3-(1-x)*sin((1-x)*pi))+1) ; [0.5, 1]
|
|
|
|
static double BackEaseInOut(double p) {
|
|
|
|
if (p < 0.5) {
|
|
|
|
double f = 2 * p;
|
|
|
|
return 0.5 * (f * f * f - f * sin(f * ALLEGRO_PI));
|
|
|
|
}
|
|
|
|
double f = (1 - (2 * p - 1));
|
|
|
|
return 0.5 * (1 - (f * f * f - f * sin(f * ALLEGRO_PI))) + 0.5;
|
|
|
|
}
|
|
|
|
|
|
|
|
static double BounceEaseOut(double p) {
|
|
|
|
if (p < 4 / 11.0) {
|
|
|
|
return (121 * p * p) / 16.0;
|
|
|
|
}
|
|
|
|
if (p < 8 / 11.0) {
|
|
|
|
return (363 / 40.0 * p * p) - (99 / 10.0 * p) + 17 / 5.0;
|
|
|
|
}
|
|
|
|
if (p < 9 / 10.0) {
|
|
|
|
return (4356 / 361.0 * p * p) - (35442 / 1805.0 * p) + 16061 / 1805.0;
|
|
|
|
}
|
|
|
|
return (54 / 5.0 * p * p) - (513 / 25.0 * p) + 268 / 25.0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static double BounceEaseIn(double p) {
|
|
|
|
return 1 - BounceEaseOut(1 - p);
|
|
|
|
}
|
|
|
|
|
|
|
|
static double BounceEaseInOut(double p) {
|
|
|
|
if (p < 0.5) {
|
|
|
|
return 0.5 * BounceEaseIn(p * 2);
|
|
|
|
}
|
|
|
|
return 0.5 * BounceEaseOut(p * 2 - 1) + 0.5;
|
|
|
|
}
|
|
|
|
|
|
|
|
// ------------------------------------------------------------------------------
|
|
|
|
|
2018-07-18 01:40:23 +02:00
|
|
|
SYMBOL_EXPORT struct Tween Tween(struct Game* game, double start, double stop, TWEEN_STYLE style, double duration) {
|
2018-04-22 05:30:56 +02:00
|
|
|
return (struct Tween){
|
|
|
|
.start = start,
|
|
|
|
.stop = stop,
|
|
|
|
.duration = duration,
|
|
|
|
.style = style,
|
|
|
|
.pos = 0,
|
|
|
|
.paused = false,
|
|
|
|
.game = game,
|
|
|
|
.done = false,
|
2018-11-17 12:06:05 +01:00
|
|
|
.predelay = 0,
|
|
|
|
.postdelay = 0,
|
2018-04-22 05:30:56 +02:00
|
|
|
.callback = NULL,
|
2018-11-20 20:30:48 +01:00
|
|
|
.func = NULL,
|
2018-04-22 05:30:56 +02:00
|
|
|
.data = NULL};
|
|
|
|
}
|
|
|
|
|
2018-11-17 12:06:05 +01:00
|
|
|
SYMBOL_EXPORT struct Tween StaticTween(struct Game* game, double value) {
|
|
|
|
return Tween(game, value, value, TWEEN_STYLE_LINEAR, 0);
|
|
|
|
}
|
|
|
|
|
2018-12-10 21:24:59 +01:00
|
|
|
SYMBOL_EXPORT bool HasTweenEnded(struct Tween* tween) {
|
|
|
|
return tween->done;
|
|
|
|
}
|
|
|
|
|
2018-05-31 20:51:44 +02:00
|
|
|
SYMBOL_EXPORT double GetTweenPosition(struct Tween* tween) {
|
2018-04-22 05:30:56 +02:00
|
|
|
if (tween->duration == 0.0) {
|
|
|
|
return 1.0;
|
|
|
|
}
|
|
|
|
return tween->pos / tween->duration;
|
|
|
|
}
|
|
|
|
|
2018-05-31 20:51:44 +02:00
|
|
|
SYMBOL_EXPORT double Interpolate(double pos, TWEEN_STYLE style) {
|
2018-04-23 03:24:13 +02:00
|
|
|
if (pos < 0.0) {
|
|
|
|
pos = 0.0;
|
|
|
|
}
|
|
|
|
if (pos > 1.0) {
|
|
|
|
pos = 1.0;
|
|
|
|
}
|
|
|
|
switch (style) {
|
2018-04-22 05:30:56 +02:00
|
|
|
case TWEEN_STYLE_LINEAR:
|
|
|
|
return LinearInterpolation(pos);
|
|
|
|
case TWEEN_STYLE_QUADRATIC_IN:
|
|
|
|
return QuadraticEaseIn(pos);
|
|
|
|
case TWEEN_STYLE_QUADRATIC_OUT:
|
|
|
|
return QuadraticEaseOut(pos);
|
|
|
|
case TWEEN_STYLE_QUADRATIC_IN_OUT:
|
|
|
|
return QuadraticEaseInOut(pos);
|
|
|
|
case TWEEN_STYLE_CUBIC_IN:
|
|
|
|
return CubicEaseIn(pos);
|
|
|
|
case TWEEN_STYLE_CUBIC_OUT:
|
|
|
|
return CubicEaseOut(pos);
|
|
|
|
case TWEEN_STYLE_CUBIC_IN_OUT:
|
|
|
|
return CubicEaseInOut(pos);
|
|
|
|
case TWEEN_STYLE_QUARTIC_IN:
|
|
|
|
return QuarticEaseIn(pos);
|
|
|
|
case TWEEN_STYLE_QUARTIC_OUT:
|
|
|
|
return QuarticEaseOut(pos);
|
|
|
|
case TWEEN_STYLE_QUARTIC_IN_OUT:
|
|
|
|
return QuarticEaseInOut(pos);
|
|
|
|
case TWEEN_STYLE_QUINTIC_IN:
|
|
|
|
return QuinticEaseIn(pos);
|
|
|
|
case TWEEN_STYLE_QUINTIC_OUT:
|
|
|
|
return QuinticEaseOut(pos);
|
|
|
|
case TWEEN_STYLE_QUINTIC_IN_OUT:
|
|
|
|
return QuinticEaseInOut(pos);
|
|
|
|
case TWEEN_STYLE_SINE_IN:
|
|
|
|
return SineEaseIn(pos);
|
|
|
|
case TWEEN_STYLE_SINE_OUT:
|
|
|
|
return SineEaseOut(pos);
|
|
|
|
case TWEEN_STYLE_SINE_IN_OUT:
|
|
|
|
return SineEaseInOut(pos);
|
|
|
|
case TWEEN_STYLE_CIRCULAR_IN:
|
|
|
|
return CircularEaseIn(pos);
|
|
|
|
case TWEEN_STYLE_CIRCULAR_OUT:
|
|
|
|
return CircularEaseOut(pos);
|
|
|
|
case TWEEN_STYLE_CIRCULAR_IN_OUT:
|
|
|
|
return CircularEaseInOut(pos);
|
|
|
|
case TWEEN_STYLE_EXPONENTIAL_IN:
|
|
|
|
return ExponentialEaseIn(pos);
|
|
|
|
case TWEEN_STYLE_EXPONENTIAL_OUT:
|
|
|
|
return ExponentialEaseOut(pos);
|
|
|
|
case TWEEN_STYLE_EXPONENTIAL_IN_OUT:
|
|
|
|
return ExponentialEaseInOut(pos);
|
|
|
|
case TWEEN_STYLE_ELASTIC_IN:
|
|
|
|
return ElasticEaseIn(pos);
|
|
|
|
case TWEEN_STYLE_ELASTIC_OUT:
|
|
|
|
return ElasticEaseOut(pos);
|
|
|
|
case TWEEN_STYLE_ELASTIC_IN_OUT:
|
|
|
|
return ElasticEaseInOut(pos);
|
|
|
|
case TWEEN_STYLE_BACK_IN:
|
|
|
|
return BackEaseIn(pos);
|
|
|
|
case TWEEN_STYLE_BACK_OUT:
|
|
|
|
return BackEaseOut(pos);
|
|
|
|
case TWEEN_STYLE_BACK_IN_OUT:
|
|
|
|
return BackEaseInOut(pos);
|
|
|
|
case TWEEN_STYLE_BOUNCE_IN:
|
|
|
|
return BounceEaseIn(pos);
|
|
|
|
case TWEEN_STYLE_BOUNCE_OUT:
|
|
|
|
return BounceEaseOut(pos);
|
|
|
|
case TWEEN_STYLE_BOUNCE_IN_OUT:
|
|
|
|
return BounceEaseInOut(pos);
|
2018-11-20 20:30:48 +01:00
|
|
|
default:
|
|
|
|
return pos;
|
2018-04-22 05:30:56 +02:00
|
|
|
}
|
2018-04-23 03:24:13 +02:00
|
|
|
}
|
|
|
|
|
2018-05-31 20:51:44 +02:00
|
|
|
SYMBOL_EXPORT double GetTweenInterpolation(struct Tween* tween) {
|
2018-11-20 20:30:48 +01:00
|
|
|
if (tween->style == TWEEN_STYLE_CUSTOM && tween->func) {
|
|
|
|
return tween->func(GetTweenPosition(tween));
|
|
|
|
}
|
2018-04-23 03:24:13 +02:00
|
|
|
return Interpolate(GetTweenPosition(tween), tween->style);
|
2018-04-22 05:30:56 +02:00
|
|
|
}
|
|
|
|
|
2018-05-31 20:51:44 +02:00
|
|
|
SYMBOL_EXPORT double GetTweenValue(struct Tween* tween) {
|
2018-04-22 05:30:56 +02:00
|
|
|
return tween->start + GetTweenInterpolation(tween) * (tween->stop - tween->start);
|
|
|
|
}
|
|
|
|
|
2018-05-31 20:51:44 +02:00
|
|
|
SYMBOL_EXPORT void UpdateTween(struct Tween* tween, double delta) {
|
2018-04-22 05:30:56 +02:00
|
|
|
if (tween->paused) { return; }
|
2018-11-17 12:06:05 +01:00
|
|
|
if (tween->predelay) {
|
|
|
|
tween->predelay -= delta;
|
|
|
|
if (tween->predelay > 0) {
|
|
|
|
return;
|
2018-11-20 22:01:39 +01:00
|
|
|
}
|
|
|
|
if (tween->predelay < 0) {
|
2018-11-17 12:06:05 +01:00
|
|
|
delta = -tween->predelay;
|
|
|
|
tween->predelay = 0;
|
|
|
|
}
|
|
|
|
}
|
2018-04-22 05:30:56 +02:00
|
|
|
tween->pos += delta;
|
|
|
|
if (tween->pos > tween->duration) {
|
|
|
|
tween->pos = tween->duration;
|
2018-11-17 12:06:05 +01:00
|
|
|
if (tween->postdelay) {
|
|
|
|
tween->postdelay -= delta;
|
|
|
|
}
|
|
|
|
if ((tween->postdelay <= 0) && (!tween->done)) {
|
2018-04-22 05:30:56 +02:00
|
|
|
tween->done = true;
|
|
|
|
if (tween->callback) {
|
|
|
|
tween->callback(tween->game, tween, tween->data);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// TODO: smooth update of the tween target
|
|
|
|
// TODO: Rumina-style movement mode
|