libsuperderpy/src/tween.c

365 lines
9.9 KiB
C
Raw Normal View History

2018-04-22 05:30:56 +02:00
/*! \file tween.c
* \brief Tweening engine.
*/
/*
* Copyright (c) Sebastian Krzyszkowiak <dos@dosowisko.net>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "tween.h"
#include "internal.h"
#include <allegro5/allegro.h>
#include <math.h>
// Easing formulas (c) 2011, Auerhaus Development, LLC
// Originally licensed under WTFPL 2.0
// https://github.com/warrenm/AHEasing
// Modeled after the line y = x
static double LinearInterpolation(double p) {
return p;
}
// Modeled after the parabola y = x^2
static double QuadraticEaseIn(double p) {
return p * p;
}
// Modeled after the parabola y = -x^2 + 2x
static double QuadraticEaseOut(double p) {
return -(p * (p - 2));
}
// Modeled after the piecewise quadratic
// y = (1/2)((2x)^2) ; [0, 0.5)
// y = -(1/2)((2x-1)*(2x-3) - 1) ; [0.5, 1]
static double QuadraticEaseInOut(double p) {
if (p < 0.5) {
return 2 * p * p;
}
return (-2 * p * p) + (4 * p) - 1;
}
// Modeled after the cubic y = x^3
static double CubicEaseIn(double p) {
return p * p * p;
}
// Modeled after the cubic y = (x - 1)^3 + 1
static double CubicEaseOut(double p) {
double f = (p - 1);
return f * f * f + 1;
}
// Modeled after the piecewise cubic
// y = (1/2)((2x)^3) ; [0, 0.5)
// y = (1/2)((2x-2)^3 + 2) ; [0.5, 1]
static double CubicEaseInOut(double p) {
if (p < 0.5) {
return 4 * p * p * p;
}
double f = ((2 * p) - 2);
return 0.5 * f * f * f + 1;
}
// Modeled after the quartic x^4
static double QuarticEaseIn(double p) {
return p * p * p * p;
}
// Modeled after the quartic y = 1 - (x - 1)^4
static double QuarticEaseOut(double p) {
double f = (p - 1);
return f * f * f * (1 - p) + 1;
}
// Modeled after the piecewise quartic
// y = (1/2)((2x)^4) ; [0, 0.5)
// y = -(1/2)((2x-2)^4 - 2) ; [0.5, 1]
static double QuarticEaseInOut(double p) {
if (p < 0.5) {
return 8 * p * p * p * p;
}
double f = (p - 1);
return -8 * f * f * f * f + 1;
}
// Modeled after the quintic y = x^5
static double QuinticEaseIn(double p) {
return p * p * p * p * p;
}
// Modeled after the quintic y = (x - 1)^5 + 1
static double QuinticEaseOut(double p) {
double f = (p - 1);
return f * f * f * f * f + 1;
}
// Modeled after the piecewise quintic
// y = (1/2)((2x)^5) ; [0, 0.5)
// y = (1/2)((2x-2)^5 + 2) ; [0.5, 1]
static double QuinticEaseInOut(double p) {
if (p < 0.5) {
return 16 * p * p * p * p * p;
}
double f = ((2 * p) - 2);
return 0.5 * f * f * f * f * f + 1;
}
// Modeled after quarter-cycle of sine wave
static double SineEaseIn(double p) {
return sin((p - 1) * (ALLEGRO_PI / 2.0)) + 1;
}
// Modeled after quarter-cycle of sine wave (different phase)
static double SineEaseOut(double p) {
return sin(p * (ALLEGRO_PI / 2.0));
}
// Modeled after half sine wave
static double SineEaseInOut(double p) {
return 0.5 * (1 - cos(p * ALLEGRO_PI));
}
// Modeled after shifted quadrant IV of unit circle
static double CircularEaseIn(double p) {
return 1 - sqrt(1 - (p * p));
}
// Modeled after shifted quadrant II of unit circle
static double CircularEaseOut(double p) {
return sqrt((2 - p) * p);
}
// Modeled after the piecewise circular function
// y = (1/2)(1 - sqrt(1 - 4x^2)) ; [0, 0.5)
// y = (1/2)(sqrt(-(2x - 3)*(2x - 1)) + 1) ; [0.5, 1]
static double CircularEaseInOut(double p) {
if (p < 0.5) {
return 0.5 * (1 - sqrt(1 - 4 * (p * p)));
}
return 0.5 * (sqrt(-((2 * p) - 3) * ((2 * p) - 1)) + 1);
}
// Modeled after the exponential function y = 2^(10(x - 1))
static double ExponentialEaseIn(double p) {
return (p == 0.0) ? p : pow(2, 10 * (p - 1));
}
// Modeled after the exponential function y = -2^(-10x) + 1
static double ExponentialEaseOut(double p) {
return (p == 1.0) ? p : 1 - pow(2, -10 * p);
}
// Modeled after the piecewise exponential
// y = (1/2)2^(10(2x - 1)) ; [0,0.5)
// y = -(1/2)*2^(-10(2x - 1))) + 1 ; [0.5,1]
static double ExponentialEaseInOut(double p) {
if (p == 0.0 || p == 1.0) { return p; }
if (p < 0.5) {
return 0.5 * pow(2, (20 * p) - 10);
}
return -0.5 * pow(2, (-20 * p) + 10) + 1;
}
// Modeled after the damped sine wave y = sin(13pi/2*x)*pow(2, 10 * (x - 1))
static double ElasticEaseIn(double p) {
return sin(13 * (ALLEGRO_PI / 2.0) * p) * pow(2, 10 * (p - 1));
}
// Modeled after the damped sine wave y = sin(-13pi/2*(x + 1))*pow(2, -10x) + 1
static double ElasticEaseOut(double p) {
return sin(-13 * (ALLEGRO_PI / 2.0) * (p + 1)) * pow(2, -10 * p) + 1;
}
// Modeled after the piecewise exponentially-damped sine wave:
// y = (1/2)*sin(13pi/2*(2*x))*pow(2, 10 * ((2*x) - 1)) ; [0,0.5)
// y = (1/2)*(sin(-13pi/2*((2x-1)+1))*pow(2,-10(2*x-1)) + 2) ; [0.5, 1]
static double ElasticEaseInOut(double p) {
if (p < 0.5) {
return 0.5 * sin(13 * (ALLEGRO_PI / 2.0) * (2 * p)) * pow(2, 10 * ((2 * p) - 1));
}
return 0.5 * (sin(-13 * (ALLEGRO_PI / 2.0) * ((2 * p - 1) + 1)) * pow(2, -10 * (2 * p - 1)) + 2);
}
// Modeled after the overshooting cubic y = x^3-x*sin(x*pi)
static double BackEaseIn(double p) {
return p * p * p - p * sin(p * ALLEGRO_PI);
}
// Modeled after overshooting cubic y = 1-((1-x)^3-(1-x)*sin((1-x)*pi))
static double BackEaseOut(double p) {
double f = (1 - p);
return 1 - (f * f * f - f * sin(f * ALLEGRO_PI));
}
// Modeled after the piecewise overshooting cubic function:
// y = (1/2)*((2x)^3-(2x)*sin(2*x*pi)) ; [0, 0.5)
// y = (1/2)*(1-((1-x)^3-(1-x)*sin((1-x)*pi))+1) ; [0.5, 1]
static double BackEaseInOut(double p) {
if (p < 0.5) {
double f = 2 * p;
return 0.5 * (f * f * f - f * sin(f * ALLEGRO_PI));
}
double f = (1 - (2 * p - 1));
return 0.5 * (1 - (f * f * f - f * sin(f * ALLEGRO_PI))) + 0.5;
}
static double BounceEaseOut(double p) {
if (p < 4 / 11.0) {
return (121 * p * p) / 16.0;
}
if (p < 8 / 11.0) {
return (363 / 40.0 * p * p) - (99 / 10.0 * p) + 17 / 5.0;
}
if (p < 9 / 10.0) {
return (4356 / 361.0 * p * p) - (35442 / 1805.0 * p) + 16061 / 1805.0;
}
return (54 / 5.0 * p * p) - (513 / 25.0 * p) + 268 / 25.0;
}
static double BounceEaseIn(double p) {
return 1 - BounceEaseOut(1 - p);
}
static double BounceEaseInOut(double p) {
if (p < 0.5) {
return 0.5 * BounceEaseIn(p * 2);
}
return 0.5 * BounceEaseOut(p * 2 - 1) + 0.5;
}
// ------------------------------------------------------------------------------
struct Tween Tween(struct Game* game, double start, double stop, double duration, TWEEN_STYLE style) {
return (struct Tween){
.start = start,
.stop = stop,
.duration = duration,
.style = style,
.pos = 0,
.paused = false,
.game = game,
.done = false,
.callback = NULL,
.data = NULL};
}
double GetTweenPosition(struct Tween* tween) {
if (tween->duration == 0.0) {
return 1.0;
}
return tween->pos / tween->duration;
}
double Interpolate(double pos, TWEEN_STYLE style) {
if (pos < 0.0) {
pos = 0.0;
}
if (pos > 1.0) {
pos = 1.0;
}
switch (style) {
2018-04-22 05:30:56 +02:00
case TWEEN_STYLE_LINEAR:
return LinearInterpolation(pos);
case TWEEN_STYLE_QUADRATIC_IN:
return QuadraticEaseIn(pos);
case TWEEN_STYLE_QUADRATIC_OUT:
return QuadraticEaseOut(pos);
case TWEEN_STYLE_QUADRATIC_IN_OUT:
return QuadraticEaseInOut(pos);
case TWEEN_STYLE_CUBIC_IN:
return CubicEaseIn(pos);
case TWEEN_STYLE_CUBIC_OUT:
return CubicEaseOut(pos);
case TWEEN_STYLE_CUBIC_IN_OUT:
return CubicEaseInOut(pos);
case TWEEN_STYLE_QUARTIC_IN:
return QuarticEaseIn(pos);
case TWEEN_STYLE_QUARTIC_OUT:
return QuarticEaseOut(pos);
case TWEEN_STYLE_QUARTIC_IN_OUT:
return QuarticEaseInOut(pos);
case TWEEN_STYLE_QUINTIC_IN:
return QuinticEaseIn(pos);
case TWEEN_STYLE_QUINTIC_OUT:
return QuinticEaseOut(pos);
case TWEEN_STYLE_QUINTIC_IN_OUT:
return QuinticEaseInOut(pos);
case TWEEN_STYLE_SINE_IN:
return SineEaseIn(pos);
case TWEEN_STYLE_SINE_OUT:
return SineEaseOut(pos);
case TWEEN_STYLE_SINE_IN_OUT:
return SineEaseInOut(pos);
case TWEEN_STYLE_CIRCULAR_IN:
return CircularEaseIn(pos);
case TWEEN_STYLE_CIRCULAR_OUT:
return CircularEaseOut(pos);
case TWEEN_STYLE_CIRCULAR_IN_OUT:
return CircularEaseInOut(pos);
case TWEEN_STYLE_EXPONENTIAL_IN:
return ExponentialEaseIn(pos);
case TWEEN_STYLE_EXPONENTIAL_OUT:
return ExponentialEaseOut(pos);
case TWEEN_STYLE_EXPONENTIAL_IN_OUT:
return ExponentialEaseInOut(pos);
case TWEEN_STYLE_ELASTIC_IN:
return ElasticEaseIn(pos);
case TWEEN_STYLE_ELASTIC_OUT:
return ElasticEaseOut(pos);
case TWEEN_STYLE_ELASTIC_IN_OUT:
return ElasticEaseInOut(pos);
case TWEEN_STYLE_BACK_IN:
return BackEaseIn(pos);
case TWEEN_STYLE_BACK_OUT:
return BackEaseOut(pos);
case TWEEN_STYLE_BACK_IN_OUT:
return BackEaseInOut(pos);
case TWEEN_STYLE_BOUNCE_IN:
return BounceEaseIn(pos);
case TWEEN_STYLE_BOUNCE_OUT:
return BounceEaseOut(pos);
case TWEEN_STYLE_BOUNCE_IN_OUT:
return BounceEaseInOut(pos);
}
return pos;
}
double GetTweenInterpolation(struct Tween* tween) {
return Interpolate(GetTweenPosition(tween), tween->style);
2018-04-22 05:30:56 +02:00
}
double GetTweenValue(struct Tween* tween) {
return tween->start + GetTweenInterpolation(tween) * (tween->stop - tween->start);
}
void UpdateTween(struct Tween* tween, double delta) {
if (tween->paused) { return; }
tween->pos += delta;
if (tween->pos > tween->duration) {
tween->pos = tween->duration;
if (!tween->done) {
tween->done = true;
if (tween->callback) {
tween->callback(tween->game, tween, tween->data);
}
}
}
}
// TODO: smooth update of the tween target
// TODO: Rumina-style movement mode