philomena/lib/philomena_query/ip_mask.ex

109 lines
3.5 KiB
Elixir

defmodule PhilomenaQuery.IpMask do
@moduledoc """
Postgres IP masks.
"""
@doc """
Parse a netmask from a string parameter, producing an `m:Postgrex.INET` type suitable for use in
a containment (<<=, <<, >>, >>=) query. Ignores invalid strings and passes the IP through on
error. [Postgres documentation](https://www.postgresql.org/docs/current/functions-net.html)
has more information on `inet` operations.
> #### Info {: .info}
>
> Netmasks lower than /8 are clamped to a minimum of /8. Such low masks are unlikely to be
> useful and this avoids producing very expensive masks to evaluate.
## Examples
iex> parse_mask(%Postgrex.INET{address: {192, 168, 1, 1}, netmask: 32}, %{"mask" => "12"})
%Postgrex.INET{address: {192, 160, 0, 0}, netmask: 12}
iex> parse_mask(%Postgrex.INET{address: {192, 168, 1, 1}, netmask: 32}, %{"mask" => "4"})
%Postgrex.INET{address: {192, 0, 0, 0}, netmask: 8}
iex> parse_mask(%Postgrex.INET{address: {192, 168, 1, 1}, netmask: 32}, %{"mask" => "64"})
%Postgrex.INET{address: {192, 168, 1, 1}, netmask: 32}
iex> parse_mask(%Postgrex.INET{address: {192, 168, 1, 1}, netmask: 32}, %{"mask" => "e"})
%Postgrex.INET{address: {192, 168, 1, 1}, netmask: 32}
iex> parse_mask(%Postgrex.INET{address: {192, 168, 1, 1}, netmask: 32}, %{})
%Postgrex.INET{address: {192, 168, 1, 1}, netmask: 32}
iex> parse_mask(%Postgrex.INET{
...> address: {0x2001, 0xab0, 0x33a8, 0xd6e2, 0x10e9, 0xac1b, 0x9b0f, 0x67bc},
...> netmask: 128
...> }, %{"mask" => "64"})
%Postgrex.INET{address: {8193, 2736, 13224, 55010, 0, 0, 0, 0}, netmask: 64}
"""
@spec parse_mask(Postgrex.INET.t(), map()) :: Postgrex.INET.t()
def parse_mask(ip, params)
def parse_mask(ip, %{"mask" => mask}) when is_binary(mask) do
case Integer.parse(mask) do
{mask, _rest} ->
mask = clamp_mask(ip.address, mask)
address = apply_mask(ip.address, mask)
%Postgrex.INET{address: address, netmask: mask}
_ ->
ip
end
end
def parse_mask(ip, _params), do: ip
defp clamp(n, min, _max) when n < min, do: min
defp clamp(n, _min, max) when n > max, do: max
defp clamp(n, _min, _max), do: n
defp clamp_mask(ip, mask) do
# Clamp mask length:
# - low end 8 (too taxing to evaluate)
# - high end address_bits (limit of address)
case tuple_size(ip) do
4 ->
clamp(mask, 8, 32)
8 ->
clamp(mask, 8, 128)
end
end
defp unit_length(ip) when tuple_size(ip) == 4, do: 8
defp unit_length(ip) when tuple_size(ip) == 8, do: 16
defp apply_mask(ip, mask) when is_tuple(ip) do
# Determine whether elements are octets or hexadectets
length = unit_length(ip)
# 1. Convert tuple to list of octets/hexadectets
# 2. Convert list to bitstring
# 3. Perform truncation operation on bitstring
# 4. Convert bitstring back to list of octets/hexadectets
# 5. Convert list to tuple
ip
|> Tuple.to_list()
|> list_to_bits(length)
|> apply_mask(mask)
|> bits_to_list(length)
|> List.to_tuple()
end
defp apply_mask(ip, mask) when is_binary(ip) do
# Truncate bit size of ip to mask length and zero-fill the remainder
<<ip::bits-size(mask), 0::integer-size(bit_size(ip)-mask)>>
end
defp list_to_bits(list, unit_length) do
for u <- list, into: <<>>, do: <<u::integer-size(unit_length)>>
end
defp bits_to_list(bits, unit_length) do
for <<u::integer-size(unit_length) <- bits>>, do: u
end
end