FiE-Game/Assets/SEGI/Resources/SEGITraceScene_C.shader

529 lines
13 KiB
Text
Raw Normal View History

2023-07-24 21:52:50 +02:00
Shader "Hidden/SEGITraceScene_C" {
Properties
{
_Color ("Main Color", Color) = (1,1,1,1)
_MainTex ("Base (RGB)", 2D) = "white" {}
_EmissionColor("Color", Color) = (0,0,0)
_Cutoff ("Alpha Cutoff", Range(0,1)) = 0.333
}
SubShader
{
Cull Off
ZTest Always
Pass
{
CGPROGRAM
#pragma target 5.0
#pragma vertex vert
#pragma fragment frag
#pragma geometry geom
#include "UnityCG.cginc"
#define PI 3.14159265
RWTexture3D<uint> RG0;
sampler3D SEGIVolumeLevel0;
sampler3D SEGIVolumeLevel1;
sampler3D SEGIVolumeLevel2;
sampler3D SEGIVolumeLevel3;
sampler3D SEGIVolumeLevel4;
sampler3D SEGIVolumeLevel5;
float4x4 SEGIVoxelViewFront;
float4x4 SEGIVoxelViewLeft;
float4x4 SEGIVoxelViewTop;
sampler2D _MainTex;
float4 _MainTex_ST;
half4 _EmissionColor;
float _Cutoff;
struct v2g
{
float4 pos : SV_POSITION;
half4 uv : TEXCOORD0;
float3 normal : TEXCOORD1;
float angle : TEXCOORD2;
};
struct g2f
{
float4 pos : SV_POSITION;
half4 uv : TEXCOORD0;
float3 normal : TEXCOORD1;
float angle : TEXCOORD2;
};
half4 _Color;
float SEGISecondaryOcclusionStrength;
v2g vert(appdata_full v)
{
v2g o;
UNITY_INITIALIZE_OUTPUT(v2g, o);
float4 vertex = v.vertex;
o.normal = UnityObjectToWorldNormal(v.normal);
float3 absNormal = abs(o.normal);
o.pos = vertex;
o.uv = float4(TRANSFORM_TEX(v.texcoord.xy, _MainTex), 1.0, 1.0);
return o;
}
int SEGIVoxelResolution;
[maxvertexcount(3)]
void geom(triangle v2g input[3], inout TriangleStream<g2f> triStream)
{
v2g p[3];
int i = 0;
for (i = 0; i < 3; i++)
{
p[i] = input[i];
p[i].pos = mul(unity_ObjectToWorld, p[i].pos);
}
float3 realNormal = float3(0.0, 0.0, 0.0);
float3 V = p[1].pos.xyz - p[0].pos.xyz;
float3 W = p[2].pos.xyz - p[0].pos.xyz;
realNormal.x = (V.y * W.z) - (V.z * W.y);
realNormal.y = (V.z * W.x) - (V.x * W.z);
realNormal.z = (V.x * W.y) - (V.y * W.x);
float3 absNormal = abs(realNormal);
int angle = 0;
if (absNormal.z > absNormal.y && absNormal.z > absNormal.x)
{
angle = 0;
}
else if (absNormal.x > absNormal.y && absNormal.x > absNormal.z)
{
angle = 1;
}
else if (absNormal.y > absNormal.x && absNormal.y > absNormal.z)
{
angle = 2;
}
else
{
angle = 0;
}
for (i = 0; i < 3; i ++)
{
if (angle == 0)
{
p[i].pos = mul(SEGIVoxelViewFront, p[i].pos);
}
else if (angle == 1)
{
p[i].pos = mul(SEGIVoxelViewLeft, p[i].pos);
}
else
{
p[i].pos = mul(SEGIVoxelViewTop, p[i].pos);
}
p[i].pos = mul(UNITY_MATRIX_P, p[i].pos);
#if defined(UNITY_REVERSED_Z)
p[i].pos.z = 1.0 - p[i].pos.z;
#else
p[i].pos.z *= -1.0;
#endif
p[i].angle = (float)angle;
}
triStream.Append(p[0]);
triStream.Append(p[1]);
triStream.Append(p[2]);
}
float4x4 SEGIVoxelToGIProjection;
float4x4 SEGIVoxelProjectionInverse;
sampler2D SEGIGIDepthNormalsTexture;
float4 SEGISunlightVector;
float4 GISunColor;
int SEGIFrameSwitch;
half4 SEGISkyColor;
float SEGISoftSunlight;
int SEGISecondaryCones;
sampler3D SEGIVolumeTexture0;
float SEGIVoxelScaleFactor;
int SEGIVoxelAA;
int SEGISphericalSkylight;
float4 SEGICurrentClipTransform;
float4 SEGIClipTransform0;
float4 SEGIClipTransform1;
float4 SEGIClipTransform2;
float4 SEGIClipTransform3;
float4 SEGIClipTransform4;
float4 SEGIClipTransform5;
float4 SEGIClipmapOverlap;
#define VoxelResolution (SEGIVoxelResolution)
float3 TransformClipSpaceInverse(float3 pos, float4 transform)
{
pos += transform.xyz;
pos = pos * 2.0 - 1.0;
pos /= transform.w;
pos = pos * 0.5 + 0.5;
return pos;
}
float3 TransformClipSpace(float3 pos, float4 transform)
{
pos = pos * 2.0 - 1.0;
pos *= transform.w;
pos = pos * 0.5 + 0.5;
pos -= transform.xyz;
return pos;
}
float3 TransformClipSpace1(float3 pos)
{
return TransformClipSpace(pos, SEGIClipTransform1);
}
float3 TransformClipSpace2(float3 pos)
{
return TransformClipSpace(pos, SEGIClipTransform2);
}
float3 TransformClipSpace3(float3 pos)
{
return TransformClipSpace(pos, SEGIClipTransform3);
}
float3 TransformClipSpace4(float3 pos)
{
return TransformClipSpace(pos, SEGIClipTransform4);
}
float3 TransformClipSpace5(float3 pos)
{
return TransformClipSpace(pos, SEGIClipTransform5);
}
float GISampleWeight(float3 pos)
{
float weight = 1.0;
if (pos.x < 0.0 || pos.x > 1.0 ||
pos.y < 0.0 || pos.y > 1.0 ||
pos.z < 0.0 || pos.z > 1.0)
{
weight = 0.0;
}
return weight;
}
float4 ConeTrace(float3 voxelOrigin, float3 kernel, float3 worldNormal)
{
float skyVisibility = 1.0;
float3 gi = float3(0,0,0);
const int numSteps = 7;
float3 adjustedKernel = normalize(kernel + worldNormal * 0.2);
float dist = length(voxelOrigin * 2.0 - 1.0);
int startMipLevel = 0;
voxelOrigin = TransformClipSpaceInverse(voxelOrigin, SEGICurrentClipTransform);
voxelOrigin.xyz += worldNormal.xyz * 0.016;
const float width = 3.38;
const float farOcclusionStrength = 4.0;
const float occlusionPower = 1.05;
for (int i = 0; i < numSteps; i++)
{
float fi = ((float)i) / numSteps;
fi = lerp(fi, 1.0, 0.001);
float coneDistance = (exp2(fi * 4.0) - 0.99) / 8.0;
float coneSize = coneDistance * width * 10.3;
float3 voxelCheckCoord = voxelOrigin.xyz + adjustedKernel.xyz * (coneDistance * 1.12 * 1.0);
float4 sample = float4(0.0, 0.0, 0.0, 0.0);
int mipLevel = floor(coneSize);
mipLevel = max(startMipLevel, log2(pow(fi, 1.3) * 24.0 * width + 1.0));
if (mipLevel == 0 || mipLevel == 1)
{
voxelCheckCoord = TransformClipSpace1(voxelCheckCoord);
sample = tex3Dlod(SEGIVolumeLevel1, float4(voxelCheckCoord.xyz, coneSize)) * GISampleWeight(voxelCheckCoord);
}
else if (mipLevel == 2)
{
voxelCheckCoord = TransformClipSpace2(voxelCheckCoord);
sample = tex3Dlod(SEGIVolumeLevel2, float4(voxelCheckCoord.xyz, coneSize)) * GISampleWeight(voxelCheckCoord);
}
else if (mipLevel == 3)
{
voxelCheckCoord = TransformClipSpace3(voxelCheckCoord);
sample = tex3Dlod(SEGIVolumeLevel3, float4(voxelCheckCoord.xyz, coneSize)) * GISampleWeight(voxelCheckCoord);
}
else if (mipLevel == 4)
{
voxelCheckCoord = TransformClipSpace4(voxelCheckCoord);
sample = tex3Dlod(SEGIVolumeLevel4, float4(voxelCheckCoord.xyz, coneSize)) * GISampleWeight(voxelCheckCoord);
}
else
{
voxelCheckCoord = TransformClipSpace5(voxelCheckCoord);
sample = tex3Dlod(SEGIVolumeLevel5, float4(voxelCheckCoord.xyz, coneSize)) * GISampleWeight(voxelCheckCoord);
}
float occlusion = skyVisibility;
float falloffFix = pow(fi, 2.0) * 4.0 + 0.0;
gi.rgb += sample.rgb * (coneSize * 1.0 + 1.0) * occlusion * falloffFix;
skyVisibility *= pow(saturate(1.0 - sample.a * SEGISecondaryOcclusionStrength * (1.0 + coneDistance * farOcclusionStrength)), 1.0 * occlusionPower);
}
float NdotL = pow(saturate(dot(worldNormal, kernel) * 1.0 - 0.0), 1.0);
gi *= NdotL;
skyVisibility *= NdotL;
skyVisibility *= lerp(saturate(dot(kernel, float3(0.0, 1.0, 0.0)) * 10.0 + 0.0), 1.0, SEGISphericalSkylight);
float3 skyColor = float3(0.0, 0.0, 0.0);
float upGradient = saturate(dot(kernel, float3(0.0, 1.0, 0.0)));
float sunGradient = saturate(dot(kernel, -SEGISunlightVector.xyz));
skyColor += lerp(SEGISkyColor.rgb * 1.0, SEGISkyColor.rgb * 0.5, pow(upGradient, (0.5).xxx));
skyColor += GISunColor.rgb * pow(sunGradient, (4.0).xxx) * SEGISoftSunlight;
gi += skyColor * skyVisibility * 10.0;
return float4(gi.rgb, 0.0f);
}
float2 rand(float3 coord)
{
float noiseX = saturate(frac(sin(dot(coord, float3(12.9898, 78.223, 35.3820))) * 43758.5453));
float noiseY = saturate(frac(sin(dot(coord, float3(12.9898, 78.223, 35.2879)*2.0)) * 43758.5453));
return float2(noiseX, noiseY);
}
float3 rgb2hsv(float3 c)
{
float4 k = float4(0.0, -1.0 / 3.0, 2.0 / 3.0, -1.0);
float4 p = lerp(float4(c.bg, k.wz), float4(c.gb, k.xy), step(c.b, c.g));
float4 q = lerp(float4(p.xyw, c.r), float4(c.r, p.yzx), step(p.x, c.r));
float d = q.x - min(q.w, q.y);
float e = 1.0e-10;
return float3(abs(q.z + (q.w - q.y) / (6.0 * d + e)), d / (q.x + e), q.x);
}
float3 hsv2rgb(float3 c)
{
float4 k = float4(1.0, 2.0 / 3.0, 1.0 / 3.0, 3.0);
float3 p = abs(frac(c.xxx + k.xyz) * 6.0 - k.www);
return c.z * lerp(k.xxx, saturate(p - k.xxx), c.y);
}
float4 DecodeRGBAuint(uint value)
{
uint ai = value & 0x0000007F;
uint vi = (value / 0x00000080) & 0x000007FF;
uint si = (value / 0x00040000) & 0x0000007F;
uint hi = value / 0x02000000;
float h = float(hi) / 127.0;
float s = float(si) / 127.0;
float v = (float(vi) / 2047.0) * 10.0;
float a = ai * 2.0;
v = pow(v, 3.0);
float3 color = hsv2rgb(float3(h, s, v));
return float4(color.rgb, a);
}
uint EncodeRGBAuint(float4 color)
{
//7[HHHHHHH] 7[SSSSSSS] 11[VVVVVVVVVVV] 7[AAAAAAAA]
float3 hsv = rgb2hsv(color.rgb);
hsv.z = pow(hsv.z, 1.0 / 3.0);
uint result = 0;
uint a = min(127, uint(color.a / 2.0));
uint v = min(2047, uint((hsv.z / 10.0) * 2047));
uint s = uint(hsv.y * 127);
uint h = uint(hsv.x * 127);
result += a;
result += v * 0x00000080; // << 7
result += s * 0x00040000; // << 18
result += h * 0x02000000; // << 25
return result;
}
void interlockedAddFloat4(RWTexture3D<uint> destination, int3 coord, float4 value)
{
uint writeValue = EncodeRGBAuint(value);
uint compareValue = 0;
uint originalValue;
[allow_uav_condition] for (int i = 0; i < 12; i++)
{
InterlockedCompareExchange(destination[coord], compareValue, writeValue, originalValue);
if (compareValue == originalValue)
break;
compareValue = originalValue;
float4 originalValueFloats = DecodeRGBAuint(originalValue);
writeValue = EncodeRGBAuint(originalValueFloats + value);
}
}
float4 frag (g2f input) : SV_TARGET
{
int3 coord = int3((int)(input.pos.x), (int)(input.pos.y), (int)(input.pos.z * VoxelResolution));
int angle = 0;
angle = (int)input.angle;
if (angle == 1)
{
coord.xyz = coord.zyx;
coord.z = VoxelResolution - coord.z - 1;
}
else if (angle == 2)
{
coord.xyz = coord.xzy;
coord.y = VoxelResolution - coord.y - 1;
}
float3 fcoord = (float3)coord.xyz / VoxelResolution;
float3 minCoord = (SEGIClipmapOverlap.xyz * 1.0 + 0.5) - SEGIClipmapOverlap.w * 0.5;
minCoord += 16.0 / VoxelResolution;
float3 maxCoord = (SEGIClipmapOverlap.xyz * 1.0 + 0.5) + SEGIClipmapOverlap.w * 0.5;
maxCoord -= 16.0 / VoxelResolution;
if (fcoord.x > minCoord.x && fcoord.x < maxCoord.x &&
fcoord.y > minCoord.y && fcoord.y < maxCoord.y &&
fcoord.z > minCoord.z && fcoord.z < maxCoord.z)
{
discard;
}
float3 gi = (0.0).xxx;
float3 worldNormal = input.normal;
float3 voxelOrigin = (fcoord + worldNormal.xyz * 0.006 * 1.0);
float4 traceResult = float4(0,0,0,0);
float2 dither = rand(fcoord);
const float phi = 1.618033988;
const float gAngle = phi * PI * 2.0;
const int numSamples = SEGISecondaryCones;
for (int i = 0; i < numSamples; i++)
{
float fi = (float)i;
float fiN = fi / numSamples;
float longitude = gAngle * fi;
float latitude = asin(fiN * 2.0 - 1.0);
float3 kernel;
kernel.x = cos(latitude) * cos(longitude);
kernel.z = cos(latitude) * sin(longitude);
kernel.y = sin(latitude);
kernel = normalize(kernel + worldNormal.xyz);
if (i == 0)
{
kernel = float3(0.0, 1.0, 0.0);
}
traceResult += ConeTrace(voxelOrigin.xyz, kernel.xyz, worldNormal.xyz);
}
traceResult /= numSamples;
gi.rgb = traceResult.rgb;
gi.rgb *= 4.3;
gi.rgb += traceResult.a * 1.0 * SEGISkyColor;
float4 result = float4(gi.rgb, 2.0);
interlockedAddFloat4(RG0, coord, result);
return float4(0.0, 0.0, 0.0, 0.0);
}
ENDCG
}
}
FallBack Off
}