FiE-Game/Assets/Spine/SpineCSharp/SkeletonBounds.cs

235 lines
9.4 KiB
C#
Raw Normal View History

2023-07-24 21:52:50 +02:00
/******************************************************************************
* Spine Runtimes Software License v2.5
*
* Copyright (c) 2013-2016, Esoteric Software
* All rights reserved.
*
* You are granted a perpetual, non-exclusive, non-sublicensable, and
* non-transferable license to use, install, execute, and perform the Spine
* Runtimes software and derivative works solely for personal or internal
* use. Without the written permission of Esoteric Software (see Section 2 of
* the Spine Software License Agreement), you may not (a) modify, translate,
* adapt, or develop new applications using the Spine Runtimes or otherwise
* create derivative works or improvements of the Spine Runtimes or (b) remove,
* delete, alter, or obscure any trademarks or any copyright, trademark, patent,
* or other intellectual property or proprietary rights notices on or in the
* Software, including any copy thereof. Redistributions in binary or source
* form must include this license and terms.
*
* THIS SOFTWARE IS PROVIDED BY ESOTERIC SOFTWARE "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
* EVENT SHALL ESOTERIC SOFTWARE BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, BUSINESS INTERRUPTION, OR LOSS OF
* USE, DATA, OR PROFITS) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
* IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*****************************************************************************/
using System;
namespace Spine {
/// <summary>
/// Collects each BoundingBoxAttachment that is visible and computes the world vertices for its polygon.
/// The polygon vertices are provided along with convenience methods for doing hit detection.
/// </summary>
public class SkeletonBounds {
private ExposedList<Polygon> polygonPool = new ExposedList<Polygon>();
private float minX, minY, maxX, maxY;
public ExposedList<BoundingBoxAttachment> BoundingBoxes { get; private set; }
public ExposedList<Polygon> Polygons { get; private set; }
public float MinX { get { return minX; } set { minX = value; } }
public float MinY { get { return minY; } set { minY = value; } }
public float MaxX { get { return maxX; } set { maxX = value; } }
public float MaxY { get { return maxY; } set { maxY = value; } }
public float Width { get { return maxX - minX; } }
public float Height { get { return maxY - minY; } }
public SkeletonBounds () {
BoundingBoxes = new ExposedList<BoundingBoxAttachment>();
Polygons = new ExposedList<Polygon>();
}
/// <summary>
/// Clears any previous polygons, finds all visible bounding box attachments,
/// and computes the world vertices for each bounding box's polygon.</summary>
/// <param name="skeleton">The skeleton.</param>
/// <param name="updateAabb">
/// If true, the axis aligned bounding box containing all the polygons is computed.
/// If false, the SkeletonBounds AABB methods will always return true.
/// </param>
public void Update (Skeleton skeleton, bool updateAabb) {
ExposedList<BoundingBoxAttachment> boundingBoxes = BoundingBoxes;
ExposedList<Polygon> polygons = Polygons;
ExposedList<Slot> slots = skeleton.slots;
int slotCount = slots.Count;
boundingBoxes.Clear();
for (int i = 0, n = polygons.Count; i < n; i++)
polygonPool.Add(polygons.Items[i]);
polygons.Clear();
for (int i = 0; i < slotCount; i++) {
Slot slot = slots.Items[i];
BoundingBoxAttachment boundingBox = slot.attachment as BoundingBoxAttachment;
if (boundingBox == null) continue;
boundingBoxes.Add(boundingBox);
Polygon polygon = null;
int poolCount = polygonPool.Count;
if (poolCount > 0) {
polygon = polygonPool.Items[poolCount - 1];
polygonPool.RemoveAt(poolCount - 1);
} else
polygon = new Polygon();
polygons.Add(polygon);
int count = boundingBox.worldVerticesLength;
polygon.Count = count;
if (polygon.Vertices.Length < count) polygon.Vertices = new float[count];
boundingBox.ComputeWorldVertices(slot, polygon.Vertices);
}
if (updateAabb) {
AabbCompute();
} else {
minX = int.MinValue;
minY = int.MinValue;
maxX = int.MaxValue;
maxY = int.MaxValue;
}
}
private void AabbCompute () {
float minX = int.MaxValue, minY = int.MaxValue, maxX = int.MinValue, maxY = int.MinValue;
ExposedList<Polygon> polygons = Polygons;
for (int i = 0, n = polygons.Count; i < n; i++) {
Polygon polygon = polygons.Items[i];
float[] vertices = polygon.Vertices;
for (int ii = 0, nn = polygon.Count; ii < nn; ii += 2) {
float x = vertices[ii];
float y = vertices[ii + 1];
minX = Math.Min(minX, x);
minY = Math.Min(minY, y);
maxX = Math.Max(maxX, x);
maxY = Math.Max(maxY, y);
}
}
this.minX = minX;
this.minY = minY;
this.maxX = maxX;
this.maxY = maxY;
}
/// <summary>Returns true if the axis aligned bounding box contains the point.</summary>
public bool AabbContainsPoint (float x, float y) {
return x >= minX && x <= maxX && y >= minY && y <= maxY;
}
/// <summary>Returns true if the axis aligned bounding box intersects the line segment.</summary>
public bool AabbIntersectsSegment (float x1, float y1, float x2, float y2) {
float minX = this.minX;
float minY = this.minY;
float maxX = this.maxX;
float maxY = this.maxY;
if ((x1 <= minX && x2 <= minX) || (y1 <= minY && y2 <= minY) || (x1 >= maxX && x2 >= maxX) || (y1 >= maxY && y2 >= maxY))
return false;
float m = (y2 - y1) / (x2 - x1);
float y = m * (minX - x1) + y1;
if (y > minY && y < maxY) return true;
y = m * (maxX - x1) + y1;
if (y > minY && y < maxY) return true;
float x = (minY - y1) / m + x1;
if (x > minX && x < maxX) return true;
x = (maxY - y1) / m + x1;
if (x > minX && x < maxX) return true;
return false;
}
/// <summary>Returns true if the axis aligned bounding box intersects the axis aligned bounding box of the specified bounds.</summary>
public bool AabbIntersectsSkeleton (SkeletonBounds bounds) {
return minX < bounds.maxX && maxX > bounds.minX && minY < bounds.maxY && maxY > bounds.minY;
}
/// <summary>Returns true if the polygon contains the point.</summary>
public bool ContainsPoint (Polygon polygon, float x, float y) {
float[] vertices = polygon.Vertices;
int nn = polygon.Count;
int prevIndex = nn - 2;
bool inside = false;
for (int ii = 0; ii < nn; ii += 2) {
float vertexY = vertices[ii + 1];
float prevY = vertices[prevIndex + 1];
if ((vertexY < y && prevY >= y) || (prevY < y && vertexY >= y)) {
float vertexX = vertices[ii];
if (vertexX + (y - vertexY) / (prevY - vertexY) * (vertices[prevIndex] - vertexX) < x) inside = !inside;
}
prevIndex = ii;
}
return inside;
}
/// <summary>Returns the first bounding box attachment that contains the point, or null. When doing many checks, it is usually more
/// efficient to only call this method if {@link #aabbContainsPoint(float, float)} returns true.</summary>
public BoundingBoxAttachment ContainsPoint (float x, float y) {
ExposedList<Polygon> polygons = Polygons;
for (int i = 0, n = polygons.Count; i < n; i++)
if (ContainsPoint(polygons.Items[i], x, y)) return BoundingBoxes.Items[i];
return null;
}
/// <summary>Returns the first bounding box attachment that contains the line segment, or null. When doing many checks, it is usually
/// more efficient to only call this method if {@link #aabbIntersectsSegment(float, float, float, float)} returns true.</summary>
public BoundingBoxAttachment IntersectsSegment (float x1, float y1, float x2, float y2) {
ExposedList<Polygon> polygons = Polygons;
for (int i = 0, n = polygons.Count; i < n; i++)
if (IntersectsSegment(polygons.Items[i], x1, y1, x2, y2)) return BoundingBoxes.Items[i];
return null;
}
/// <summary>Returns true if the polygon contains the line segment.</summary>
public bool IntersectsSegment (Polygon polygon, float x1, float y1, float x2, float y2) {
float[] vertices = polygon.Vertices;
int nn = polygon.Count;
float width12 = x1 - x2, height12 = y1 - y2;
float det1 = x1 * y2 - y1 * x2;
float x3 = vertices[nn - 2], y3 = vertices[nn - 1];
for (int ii = 0; ii < nn; ii += 2) {
float x4 = vertices[ii], y4 = vertices[ii + 1];
float det2 = x3 * y4 - y3 * x4;
float width34 = x3 - x4, height34 = y3 - y4;
float det3 = width12 * height34 - height12 * width34;
float x = (det1 * width34 - width12 * det2) / det3;
if (((x >= x3 && x <= x4) || (x >= x4 && x <= x3)) && ((x >= x1 && x <= x2) || (x >= x2 && x <= x1))) {
float y = (det1 * height34 - height12 * det2) / det3;
if (((y >= y3 && y <= y4) || (y >= y4 && y <= y3)) && ((y >= y1 && y <= y2) || (y >= y2 && y <= y1))) return true;
}
x3 = x4;
y3 = y4;
}
return false;
}
public Polygon GetPolygon (BoundingBoxAttachment attachment) {
int index = BoundingBoxes.IndexOf(attachment);
return index == -1 ? null : Polygons.Items[index];
}
}
public class Polygon {
public float[] Vertices { get; set; }
public int Count { get; set; }
public Polygon () {
Vertices = new float[16];
}
}
}