mirror of
https://github.com/FriendshipIsEpic/FiE-Game.git
synced 2024-11-26 07:18:00 +01:00
239 lines
7.9 KiB
HLSL
239 lines
7.9 KiB
HLSL
|
/**
|
||
|
\author Michael Mara and Morgan McGuire, Casual Effects. 2015.
|
||
|
*/
|
||
|
|
||
|
#ifndef __SCREEN_SPACE_RAYTRACE__
|
||
|
#define __SCREEN_SPACE_RAYTRACE__
|
||
|
|
||
|
sampler2D_float _CameraDepthTexture;
|
||
|
|
||
|
float distanceSquared(float2 A, float2 B)
|
||
|
{
|
||
|
A -= B;
|
||
|
return dot(A, A);
|
||
|
}
|
||
|
|
||
|
float distanceSquared(float3 A, float3 B)
|
||
|
{
|
||
|
A -= B;
|
||
|
return dot(A, A);
|
||
|
}
|
||
|
|
||
|
void swap(inout float v0, inout float v1)
|
||
|
{
|
||
|
float temp = v0;
|
||
|
v0 = v1;
|
||
|
v1 = temp;
|
||
|
}
|
||
|
|
||
|
bool isIntersecting(float rayZMin, float rayZMax, float sceneZ, float layerThickness)
|
||
|
{
|
||
|
return (rayZMax >= sceneZ - layerThickness) && (rayZMin <= sceneZ);
|
||
|
}
|
||
|
|
||
|
void rayIterations(in bool traceBehindObjects, inout float2 P, inout float stepDirection, inout float end, inout int stepCount, inout int maxSteps, inout bool intersecting,
|
||
|
inout float sceneZ, inout float2 dP, inout float3 Q, inout float3 dQ, inout float k, inout float dk,
|
||
|
inout float rayZMin, inout float rayZMax, inout float prevZMaxEstimate, inout bool permute, inout float2 hitPixel,
|
||
|
inout float2 invSize, inout float layerThickness)
|
||
|
{
|
||
|
bool stop = intersecting;
|
||
|
|
||
|
UNITY_LOOP
|
||
|
for (; (P.x * stepDirection) <= end && stepCount < maxSteps && !stop; P += dP, Q.z += dQ.z, k += dk, stepCount += 1)
|
||
|
{
|
||
|
// The depth range that the ray covers within this loop iteration.
|
||
|
// Assume that the ray is moving in increasing z and swap if backwards.
|
||
|
rayZMin = prevZMaxEstimate;
|
||
|
//rayZMin = (dQ.z * -0.5 + Q.z) / (dk * -0.5 + k);
|
||
|
// Compute the value at 1/2 pixel into the future
|
||
|
rayZMax = (dQ.z * 0.5 + Q.z) / (dk * 0.5 + k);
|
||
|
prevZMaxEstimate = rayZMax;
|
||
|
|
||
|
if (rayZMin > rayZMax)
|
||
|
{
|
||
|
swap(rayZMin, rayZMax);
|
||
|
}
|
||
|
|
||
|
// Undo the homogeneous operation to obtain the camera-space
|
||
|
// Q at each point
|
||
|
hitPixel = permute ? P.yx : P;
|
||
|
|
||
|
sceneZ = SAMPLE_DEPTH_TEXTURE_LOD(_CameraDepthTexture, float4(hitPixel * invSize,0,0)).r;
|
||
|
sceneZ = -LinearEyeDepth(sceneZ);
|
||
|
|
||
|
bool isBehind = (rayZMin <= sceneZ);
|
||
|
intersecting = isBehind && (rayZMax >= sceneZ - layerThickness);
|
||
|
stop = traceBehindObjects ? intersecting : isBehind;
|
||
|
|
||
|
} // pixel on ray
|
||
|
|
||
|
P -= dP, Q.z -= dQ.z, k -= dk;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
\param csOrigin must have z < -0.01, and project within the valid screen rectangle
|
||
|
\param stepRate Set to 1.0 by default, higher to step faster
|
||
|
*/
|
||
|
bool castDenseScreenSpaceRay
|
||
|
(float3 csOrigin,
|
||
|
float3 csDirection,
|
||
|
float4x4 projectToPixelMatrix,
|
||
|
float2 csZBufferSize,
|
||
|
float3 clipInfo,
|
||
|
float jitterFraction,
|
||
|
int maxSteps,
|
||
|
float layerThickness,
|
||
|
float maxRayTraceDistance,
|
||
|
out float2 hitPixel,
|
||
|
int stepRate,
|
||
|
bool traceBehindObjects,
|
||
|
out float3 csHitPoint,
|
||
|
out float stepCount) {
|
||
|
|
||
|
float2 invSize = float2(1.0 / csZBufferSize.x, 1.0 / csZBufferSize.y);
|
||
|
|
||
|
// Initialize to off screen
|
||
|
hitPixel = float2(-1, -1);
|
||
|
|
||
|
float nearPlaneZ = -0.01;
|
||
|
// Clip ray to a near plane in 3D (doesn't have to be *the* near plane, although that would be a good idea)
|
||
|
float rayLength = ((csOrigin.z + csDirection.z * maxRayTraceDistance) > nearPlaneZ) ?
|
||
|
((nearPlaneZ - csOrigin.z) / csDirection.z) :
|
||
|
maxRayTraceDistance;
|
||
|
|
||
|
float3 csEndPoint = csDirection * rayLength + csOrigin;
|
||
|
|
||
|
// Project into screen space
|
||
|
// This matrix has a lot of zeroes in it. We could expand
|
||
|
// out these multiplies to avoid multiplying by zero
|
||
|
// ...but 16 MADDs are not a big deal compared to what's ahead
|
||
|
float4 H0 = mul(projectToPixelMatrix, float4(csOrigin, 1.0));
|
||
|
float4 H1 = mul(projectToPixelMatrix, float4(csEndPoint, 1.0));
|
||
|
|
||
|
// There are a lot of divisions by w that can be turned into multiplications
|
||
|
// at some minor precision loss...and we need to interpolate these 1/w values
|
||
|
// anyway.
|
||
|
//
|
||
|
// Because the caller was required to clip to the near plane,
|
||
|
// this homogeneous division (projecting from 4D to 2D) is guaranteed
|
||
|
// to succeed.
|
||
|
float k0 = 1.0 / H0.w;
|
||
|
float k1 = 1.0 / H1.w;
|
||
|
|
||
|
// Screen-space endpoints
|
||
|
float2 P0 = H0.xy * k0;
|
||
|
float2 P1 = H1.xy * k1;
|
||
|
|
||
|
// Switch the original points to values that interpolate linearly in 2D:
|
||
|
float3 Q0 = csOrigin * k0;
|
||
|
float3 Q1 = csEndPoint * k1;
|
||
|
|
||
|
#if 1 // Clipping to the screen coordinates. We could simply modify maxSteps instead
|
||
|
float yMax = csZBufferSize.y - 0.5;
|
||
|
float yMin = 0.5;
|
||
|
float xMax = csZBufferSize.x - 0.5;
|
||
|
float xMin = 0.5;
|
||
|
|
||
|
// 2D interpolation parameter
|
||
|
float alpha = 0.0;
|
||
|
// P0 must be in bounds
|
||
|
if (P1.y > yMax || P1.y < yMin) {
|
||
|
float yClip = (P1.y > yMax) ? yMax : yMin;
|
||
|
float yAlpha = (P1.y - yClip) / (P1.y - P0.y); // Denominator is not zero, since P0 != P1 (or P0 would have been clipped!)
|
||
|
alpha = yAlpha;
|
||
|
}
|
||
|
|
||
|
// P0 must be in bounds
|
||
|
if (P1.x > xMax || P1.x < xMin) {
|
||
|
float xClip = (P1.x > xMax) ? xMax : xMin;
|
||
|
float xAlpha = (P1.x - xClip) / (P1.x - P0.x); // Denominator is not zero, since P0 != P1 (or P0 would have been clipped!)
|
||
|
alpha = max(alpha, xAlpha);
|
||
|
}
|
||
|
|
||
|
// These are all in homogeneous space, so they interpolate linearly
|
||
|
P1 = lerp(P1, P0, alpha);
|
||
|
k1 = lerp(k1, k0, alpha);
|
||
|
Q1 = lerp(Q1, Q0, alpha);
|
||
|
#endif
|
||
|
|
||
|
// We're doing this to avoid divide by zero (rays exactly parallel to an eye ray)
|
||
|
P1 = (distanceSquared(P0, P1) < 0.0001) ? P0 + float2(0.01, 0.01) : P1;
|
||
|
|
||
|
float2 delta = P1 - P0;
|
||
|
|
||
|
// Assume horizontal
|
||
|
bool permute = false;
|
||
|
if (abs(delta.x) < abs(delta.y)) {
|
||
|
// More-vertical line. Create a permutation that swaps x and y in the output
|
||
|
permute = true;
|
||
|
|
||
|
// Directly swizzle the inputs
|
||
|
delta = delta.yx;
|
||
|
P1 = P1.yx;
|
||
|
P0 = P0.yx;
|
||
|
}
|
||
|
|
||
|
// From now on, "x" is the primary iteration direction and "y" is the secondary one
|
||
|
|
||
|
float stepDirection = sign(delta.x);
|
||
|
float invdx = stepDirection / delta.x;
|
||
|
float2 dP = float2(stepDirection, invdx * delta.y);
|
||
|
|
||
|
// Track the derivatives of Q and k
|
||
|
float3 dQ = (Q1 - Q0) * invdx;
|
||
|
float dk = (k1 - k0) * invdx;
|
||
|
|
||
|
dP *= stepRate;
|
||
|
dQ *= stepRate;
|
||
|
dk *= stepRate;
|
||
|
|
||
|
P0 += dP * jitterFraction;
|
||
|
Q0 += dQ * jitterFraction;
|
||
|
k0 += dk * jitterFraction;
|
||
|
|
||
|
// Slide P from P0 to P1, (now-homogeneous) Q from Q0 to Q1, and k from k0 to k1
|
||
|
float3 Q = Q0;
|
||
|
float k = k0;
|
||
|
|
||
|
// We track the ray depth at +/- 1/2 pixel to treat pixels as clip-space solid
|
||
|
// voxels. Because the depth at -1/2 for a given pixel will be the same as at
|
||
|
// +1/2 for the previous iteration, we actually only have to compute one value
|
||
|
// per iteration.
|
||
|
float prevZMaxEstimate = csOrigin.z;
|
||
|
stepCount = 0.0;
|
||
|
float rayZMax = prevZMaxEstimate, rayZMin = prevZMaxEstimate;
|
||
|
float sceneZ = 100000;
|
||
|
|
||
|
// P1.x is never modified after this point, so pre-scale it by
|
||
|
// the step direction for a signed comparison
|
||
|
float end = P1.x * stepDirection;
|
||
|
|
||
|
bool intersecting = isIntersecting(rayZMin, rayZMax, sceneZ, layerThickness);
|
||
|
// We only advance the z field of Q in the inner loop, since
|
||
|
// Q.xy is never used until after the loop terminates
|
||
|
|
||
|
//int rayIterations = min(maxSteps, stepsToGetOffscreen);
|
||
|
|
||
|
|
||
|
float2 P = P0;
|
||
|
|
||
|
int originalStepCount = 0;
|
||
|
rayIterations(traceBehindObjects, P, stepDirection, end, originalStepCount, maxSteps, intersecting,
|
||
|
sceneZ, dP, Q, dQ, k, dk,
|
||
|
rayZMin, rayZMax, prevZMaxEstimate, permute, hitPixel,
|
||
|
invSize, layerThickness);
|
||
|
|
||
|
|
||
|
stepCount = originalStepCount;
|
||
|
|
||
|
// Loop only advanced the Z component. Now that we know where we are going
|
||
|
// update xy
|
||
|
Q.xy += dQ.xy * stepCount;
|
||
|
// Q is a vector, so we are trying to get by with 1 division instead of 3.
|
||
|
csHitPoint = Q * (1.0 / k);
|
||
|
|
||
|
return intersecting;
|
||
|
}
|
||
|
|
||
|
#endif // __SCREEN_SPACE_RAYTRACE__
|