119 lines
2.4 KiB
C
119 lines
2.4 KiB
C
|
/*
|
||
|
|
||
|
3DKIT version 1.3
|
||
|
High speed 3D graphics and rendering library for Linux.
|
||
|
|
||
|
Copyright (C) 1996, 1997 Paul Sheer psheer@icon.co.za
|
||
|
|
||
|
This library is free software; you can redistribute it and/or
|
||
|
modify it under the terms of the GNU Library General Public
|
||
|
License as published by the Free Software Foundation; either
|
||
|
version 2 of the License, or (at your option) any later version.
|
||
|
|
||
|
This library is distributed in the hope that it will be useful,
|
||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||
|
Library General Public License for more details.
|
||
|
|
||
|
You should have received a copy of the GNU Library General Public
|
||
|
License along with this library; if not, write to the Free
|
||
|
Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
|
||
|
MA 02111-1307, USA
|
||
|
|
||
|
*/
|
||
|
|
||
|
|
||
|
#include <math.h>
|
||
|
#include "quickmath.h"
|
||
|
|
||
|
inline double fsqr (double x)
|
||
|
{
|
||
|
return x * x;
|
||
|
}
|
||
|
|
||
|
inline int lsqr (int x)
|
||
|
{
|
||
|
return (int) x * x;
|
||
|
}
|
||
|
|
||
|
inline double fmax (double a, double b)
|
||
|
{
|
||
|
return max(a, b);
|
||
|
}
|
||
|
|
||
|
inline double fmin (double a, double b)
|
||
|
{
|
||
|
return min(a, b);
|
||
|
}
|
||
|
|
||
|
inline double fsgn (double a)
|
||
|
{
|
||
|
return (a == 0.0 ? 0.0 : (a > 0.0 ? 1.0 : -1.0));
|
||
|
}
|
||
|
|
||
|
inline double dot (Vec a, Vec b)
|
||
|
{
|
||
|
return a.x * b.x + a.y * b.y + a.z * b.z;
|
||
|
}
|
||
|
|
||
|
Vec cross (Vec a, Vec b)
|
||
|
{
|
||
|
Vec c;
|
||
|
c.x = a.y * b.z - a.z * b.y;
|
||
|
c.y = a.z * b.x - a.x * b.z;
|
||
|
c.z = a.x * b.y - a.y * b.x;
|
||
|
return c;
|
||
|
}
|
||
|
|
||
|
Vec plus (Vec a, Vec b)
|
||
|
{
|
||
|
Vec c;
|
||
|
c.x = a.x + b.x;
|
||
|
c.y = a.y + b.y;
|
||
|
c.z = a.z + b.z;
|
||
|
return c;
|
||
|
}
|
||
|
|
||
|
Vec minus (Vec a, Vec b)
|
||
|
{
|
||
|
Vec c;
|
||
|
c.x = a.x - b.x;
|
||
|
c.y = a.y - b.y;
|
||
|
c.z = a.z - b.z;
|
||
|
return c;
|
||
|
}
|
||
|
|
||
|
Vec times (Vec a, double f)
|
||
|
{
|
||
|
Vec c;
|
||
|
c.x = a.x * f;
|
||
|
c.y = a.y * f;
|
||
|
c.z = a.z * f;
|
||
|
return c;
|
||
|
}
|
||
|
|
||
|
double norm (Vec a)
|
||
|
{
|
||
|
return sqrt (sqr(a.x) + sqr(a.y) + sqr(a.z));
|
||
|
}
|
||
|
|
||
|
void orth_vectors(Vec X, Vec *r1, Vec *r2, double r)
|
||
|
{
|
||
|
if (X.x == 0 && X.y == 0) {
|
||
|
r1->x = 1;
|
||
|
r1->y = 0;
|
||
|
r1->z = 0;
|
||
|
} else {
|
||
|
r1->x = X.y / sqrt (X.x * X.x + X.y * X.y);
|
||
|
r1->y = -X.x / sqrt (X.x * X.x + X.y * X.y);
|
||
|
r1->z = 0;
|
||
|
}
|
||
|
*r1 = times (*r1, r); /* r1 now has length r */
|
||
|
|
||
|
*r2 = cross (X, *r1);
|
||
|
*r2 = times (*r2, r / norm (*r2)); /* r2 now has length r */
|
||
|
|
||
|
/* r1 and r2 are now two vectors prependicular to each other and to (x,y,z) */
|
||
|
}
|
||
|
|